Arsenic Oxidation Using UV-Activated Persulfate in Aqueous Solutions: Optimization Using Response Surface Methodology Based on Box-Bencken Design
Authors
Abstract:
Introduction: The use of arsenic contaminated water can cause a variety of adverse health effects in humans. Therefore, it is essential to seek out a method to remove arsenic more efficiently. This study examined the amount of arsenic oxidation by response surface methodology (RSM) based on Box-Bencken design. Materials and Methods: In this study, oxidizing arsenite to arsenate was performed by activation of persulfate with UV and the optimal conditions determined using the RSM based on Box-Bencken design to evaluate the effects of independent variables on the response (arsenite oxidation efficiency) performance and to predict the best response rate. In this study, the effects of different parameters such as pH (3-11), concentration of persulfate (4-14 mM), and initial concentration of arsenic (0.1-0.9 mg/l) on process efficiency were investigated. The number of tests in this study was 45, and the oxidation rate was measured using the UV visible spectrophotometer (DR 6000) and the molybdate colorimetric method. Results: Increasing the concentration of arsenic increased oxidation. However, with increasing pH, the oxidation rate decreased and the highest oxidation rate at all concentrations was observed at pH 3. The value higher than R2 (0.934) indicated that the oxidation of arsenic (v) could be determined by this model. Conclusion: Arsenite is a highly toxic metal that is difficult to remove by conventional treatment methods, but a pre-treatment phase can convert arsenite into arsenate and facilitate the removal process. In this study, the use of UV-activated persulfate increased the efficiency of arsenic oxidation to 96%.
similar resources
Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology
Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...
full textModeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology
Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...
full textBisphenol A removal from aqueous solutions using novel UV/persulfate/H2O2/Cu system: optimization and modelling with central composite design and response surface methodology
BACKGROUND Bisphenol A is a high production volume chemical widely used in manufacturing polycarbonate plastics and epoxy resins used in many industries. Due to its adverse effects on human health as an endocrine disruptor and many other effects on the various organs of the human body as well as aquatic organisms, it should be removed from the aquatic environments. This study aimed to mineralis...
full textPerformance evaluation of mullite ceramic membrane for oily wastewater treatment using response surface methodology based on Box-Behnken design
Nowadays, oily wastewater is increasing along with the growth of various industries. So, wastewater treatment is necessary in order to protect the environment. In this study, a mullite ceramic membrane was prepared. Then, oily wastewater treatment with 200 mg L-1 concentration was investigated by the response surface methodology based on Box-Behnken design (BBD) using Design-Expert 7...
full textOptimization of ammonia removal in an integrated fix-film activated sludge using response surface methodology
In this work, removal of ammonia from synthetic wastewater using integrated fixed-film activated sludge (IFAS) process was optimized using response surface methodology (RSM). The main operating parameters such as ammonia concentration rate (ALR) and hydraulic retention time (HRT) were optimized to acquire the maximum removal efficiency. The linear, 2FI, quadratic, mean, and cubic models were ut...
full textOptimization and kinetic evaluation of acid blue 193 degradation by UV/peroxydisulfate oxidation using response surface methodology
The optimization of process conditions for the degradation of Acid Blue 193 by UV/peroxydisulfate was investigated using response surface methodology (RSM). The effects of four parameters namely initial K2S2O8 concentration, UV irradiation, temperature, and initial dye concentration on two process responses, color removal and the rate constants of the first-order kinetic equations, were investi...
full textMy Resources
Journal title
volume 3 issue 3
pages 557- 66
publication date 2018-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023